
Experiments in Automated Identification of Ambiguous Natural-Language
Requirements

Allen P. Nikora
Jet Propulsion Laboratory,

California Institute of Technology
Pasadena, CA

Allen.P.Nikora@jpl.nasa.gov

Jane Huffman Hayes
Computer Science Department,

University of Kentucky
Lexington, KY

hayes@cs.uky.edu

E. Ashlee Holbrook
Computer Science Department,

University of Kentucky
Lexington, KY

ashlee@uky.edu

Abstract — Recent research indicates that a significant
proportion of the failures observed in operational space
mission systems can be traced back to ambiguous
requirements. Frequently, the functionality and behavior
specified by the defective requirement is insufficiently detailed
(e.g., information about the expected operational context is
missing) or the requirement is phrased so as to permit multiple
interpretations. Recent analysis of several thousand anomalies
observed in operational space missions shows that about 20%
are due to either operator error or faulty procedures. Again,
many of these anomalies can be traced back to requirements
exhibiting the same types of ambiguities.

Since a typical space mission is specified by several
thousand requirements, a significant amount of effort may
need to be expended to discover ambiguous requirements.
Many development organizations still conduct this type of
discovery manually, after the requirements have been specified
– in addition to requiring significant effort, manual analysis is
also error-prone.

Previous work has shown the utility of machine learners
and simple natural language processing techniques (e.g., parts
of speech tagging) for supporting the identification of a
relatively small number of temporal requirements within a
large body of system requirements. We extend this work to the
problem of identifying the ambiguous requirements within the
complete set of requirements for the flight and ground
components of a recently-launched space mission. Initial
results indicate that these techniques can be effective in
automatically identifying ambiguous requirements. Unlike
heuristic techniques, new learning models for identifying
ambiguous requirements can be developed as mission
requirements and vocabularies evolve.

Keywords – requirements analysis, requirements ambiguity,
text processing.

I. INTRODUCTION
Defective requirements have been shown to be a

significant root cause of failures observed in software
systems during fielded use [1], [2]. Ambiguous requirement
are an important type of defect contributing to operational
failures of software systems. A number of software
development practices, such as formal inspections [3], are
designed to identify this and other types of defects during
development so as to prevent their escape into operations.
Requirements that have been developed with a specification
language (e.g., Promela [4], UML [5]) can be input to tools

that will reason about specific properties of the requirements
and identify those properties that are not satisfied by the
requirements. Although these techniques can be quite
effective in identifying some types of requirements defects,
they still have a low level of acceptance in software
development organizations. A significant amount of effort
can be required to learn:
• A formal specification language
• Effective use of the analysis tools.
• The skill of abstracting away unnecessary detail when

specifying requirements in a formal language.
At the same time, there is increasing pressure to

minimize the cost and schedule time for software
development efforts, giving software developers even less
time to learn effective use of formal techniques.
Consequently, a large majority of software requirements we
have seen continue to be specified in natural language.
 When analyzing requirements, then, we must be able to
deal with natural language requirements. This paper
describes work in one specific area, that of identifying
ambiguous requirements. Because specification documents
for the types of systems with which the investigators have
experience typically contain thousands of requirements,
manual identification (i.e., reading) of ambiguous
requirements may require significant effort, and can also be
error-prone. Automated support for identifying ambiguous
requirements could reduce the required effort, and
potentially increase the identification accuracy. Results
obtained to date indicate that well-performing classifiers for
identifying ambiguous requirements may be developed
using simple representations of the text and structure of
natural language requirements.
 The remainder of the paper is organized as follows:
• Section II describes work related to identifying

ambiguous natural-language requirements.
• Section III describes an approach to identifying

ambiguous natural-language requirements.
• Section IV presents the results of our work.
• Section V addresses potential threats to the validity of

this work.
• Section VI discusses the results of this work, and lays

out directions for future research in this area.

II. RELATED WORK
Hayes et al. have developed several requirements tracing

methods and tools for NASA, such as keyword matching
based Software Automated Verification and Validation and
Analysis System (SAVVAS) Front End Processor (SFEP)
[6] and Information Retrieval (IR) based approach [7], [8].
To determine whether a higher-level requirement is related
to a lower-level requirement, the IR based requirements
tracing method counts the number of common terms and
their frequency in both requirements.Then their similary is
determined based on the relative frequencies of common
terms. This approach has been applied to a small project
and has shown improvement over manual tracing.
Although this technique can be used to identify related
requirements within a subset of requirements of a specific
type (e.g., temporal requirements), its intended use is not to
identify requirements of a specific type.

The Software Assurance Technology Center (SATC) at
the Goddard Spaceflight Center (GSFC) [9] has developed
the Automated Requirements Measurement (ARM) tool for
assessing the quality of requirements specified in natural
language [10]. ARM searches a requirements document for
terms that research conducted by the SATC has identified as
quality indicators; several of the measured terms are linked
by the research to requirements ambiguity.

Requirements Assistant, a commercially available tool,
encodes the experience of its developers in a knowledge
base geared towards identifying ambiguous, inconsistent, or
incomplete requirements [11].

Cobleigh et al. have developed the Property Eludicator
(PROPEL), a technique and toolset for elucidating rigorous
system properties in natural language [12], [13], [14], [15].
Since the goal of PROPEL is the accurate and complete
specification of system properties, it can be considered as a
technique and tool for addressing ambiguity of specific
types of requirements. Unlike the previously mentioned
techniques and tools, PROPEL deals with ambiguity from
the point of view of preventing the generation of ambiguous
requirements rather than identifying them. The PROPEL
website [15] states that “The PROPEL approach provides
templates that explicitly capture these [subtle but important,
and often unconsidered] details for property patterns that
commonly occur in the properties that are created for model
checking and other types of analysis. With PROPEL, users
are shown the evolving property specification in both
"disciplined" English [a restricted subset of natural
language] sentences and graphical finite-state automata
(FSA), allowing the specifier to easily move between these
two views as they develop their properties.”

Finally, one of the investigators has recently used
machine learning and natural language processing to
identify temporal requirements within a specification
document [16] and to differentiate between 8 frequently-

used Linear Temporal Logic (LTL) patterns in natural-
language temporal requirements [17]. Although that work
did not address the issue of ambiguous requirements, the
goal was to distinguish between two or more different types
of natural-language requirements, which is relevant to the
work reported here.

III. DATA SOURCES, REPRESENTATION, AND APPROACH
The requirements we analyzed are for a JPL-managed

robotic planetary exploration mission that is currently
operating. Nearly 7500 requirements were available for
analysis – these included functional, nonfunctional, and
development process requirements. For this work, we
sampled this set of requirements to produce a set of training
data to which machine learners and natural language
processing techniques could be applied. The sampling
strategy selected over 500 requirements from the original
set, each requirement having the same likelihood of being
selected as any other. We then read each requirement to
classify it as “ambiguous “or “not ambiguous.” We are
confident in our classifications because the individual who
led this subtask (Nikora) has extensive experience (over 30
years) in developing space mission system software and
assessing its quality. A small fraction of the requirements
could not be classified with confidence; these were excluded
from the final set used to construct the training data, which
still included over 500 requirements. In the final set of
requirements, the number tagged as ambiguous was
somewhat larger than, but close to, the number of
requirements tagged as ambiguous.

The training data to which we applied machine learners
was constructed from the final set of requirements in the
following manner:

1. The Trigrams ‘n‘ Tags (TnT) parts-of-speech
(PoS) tagger [18], [19] was applied to each
word in each requirement as in our earlier
work (e.g., [16], [17]). For each text string
input to TnT, a string of parts-of-speech tags is
returned, each tag corresponding to a word in
the original text string. For example, applying
TnT to the text “The star scanner shall be
calibrated no earlier than 30 days after launch
and no later than 40 days after launch”
produces the following string of PoS tags:
“DT, NN, NN, MD, VB, VBN, RB, RBR, IN,
CD, NNS, IN, NN, CC, RB, RBR, IN, CD,
NNS, IN, NN”. The meanings of the tags in
this string are as follows. CC: Coordinating
conjunction; CD: Cardinal number; DT:
Determiner; IN: Conjunction, subordinating;
MD: Modal Verb; NN: Noun, singular or
mass; NNS: Noun, plural; RB: Adverb; RBR:
Adverb, comparative; VB: Verb, base form;
VBN: Past participle. The Penn Treebank

Guidelines [20] define the meanings of all tags
produced by TnT.

2. For each word in a requirement, the PoS tag
produced by TnT for that word was appended
to that word. For the requirement “The star
scanner shall be calibrated no earlier than 30
days after launch and no later than 40 days
after launch,” this operation yields the symbol
string “The_DT star_NN scanner_NN
shall_MD be_VB calibrated_VBN no_RB
earlier_RBR than_IN 30_CD days_NNS
after_IN launch_NN and_CC no_RB
later_RBR than_IN 40_CD days_NNS
after_IN launch_NN.”

3. After the PoS tags were appended to the words
in the text of the requirement, those symbols
containing frequently-used words were
removed from the text. A stop list posted on
the website of the University of Glascow’s
Department of Computer Science defines the
words that were removed [21]. In addition to
the words on this list, symbols containing the
word “shall” were removed from the text.

4. Each requirement was formatted as a text
string in the Attribute-Relation File Format
Attribute-Relation File Format (ARFF) [22],
[24] for the WEKA data mining tool [23].

5. WEKA’s capabilities were used to transform
the text string into a vectorized representation.
The text string was converted into three
different representations – word/symbol
counts, frequencies, and TF (Term Frequency)
x IDF (Inverse Document Frequency)

6. We also created representations of the
temporal requirements text without the PoS
information by omitting steps 1 and 2 above.

Each record in the data section is a vectorized
representation of the text string for an individual ISA. In
the example above, the first item in the first data record is
the value of TFxIDF for the word “parameters”, the second
item is the value of TF x IDF for the word “schedule”, and
so forth. For the other representations, these values are
word counts and frequencies. The class of the ISA is
appended to end of the vector. For the example above, we
distinguish between ambiguous requirements (Ambig) and
unambiguous requirements (Unambig).

We then developed five variants for each training set by
varying the number of included attributes. In this case, an
attribute is the count, frequency, or TFxIDF value for the
unique symbols or words in the set of requirements. The
attributes for each variant were chosen by applying
WEKA‘s implementation of the Information Gain
(InfoGain) attribute evaluator in conjunction with the
Ranker attribute ranking technique [22]. The first variant of
the training data included the attributes accounting for the
first 70% of the classification merit according to InfoGain,

the second included the attributes accounting for the first
75% of the classification merit, and so on to the fifth
variant, which included 90% of the attributes respectively.

Twenty-nine classifiers implemented in WEKA, shown in
TABLE I, were applied to these training sets. The classifiers
were applied to each variant using 10-fold cross validation,
the results of which were used to plot Receiver Operational
Characteristic (ROC) curves [22] curves for each classifier
applied to each variant.

TABLE I. CLASSFIERS APPLIED TO TRAINING SETS

AD Tree Naïve Bayes Updateable
Bayes Net Naïve Bayes

Complement Naïve Bayes NB Tree
Conjunctive Rule Nnge
Decision Stump OneR
Decision Table PART

Hyper Pipes Random Forest
IB1 Random Tree
IBk RBF Network
J48 Ridor
JRip SMO
Kstar VFI

Simple Logistic Voted Perceptron
LWL

Naïve Bayes Multinomial
Zero R

IV. RESULTS
Classifiers are evaluated according to four criteria: pd

(probability of detection), pf (probability of false detection,
or “false positives”), accuracy, and precision. These criteria
are defined with respect to a confusion matrix, as follows:

• Probability of detection (pd): a/(a+b)
• Probability of false detection (pf): c/(c+d)
• Precision: c/(a+c)
• Accuracy: (a+d)/(a+b+c+d)

where a, b, c, and d are entries in a confusion matrix:

Detected as
type “x”

Detected as
type “y”

a b Really type “x”
c d Really type “y”

In this case, we chose as the best classifier the one whose

ROC curve comes closest to the performance ideal – a pd
value of 1 and pf value of 0.

Figure 1. - Figure 4. show the ROC curves for the “best”
classifiers obtained for each type of representation. Figure 1.
and Figure 2. show the performance of the best classifiers
for counts, frequencies, and TFxIDF values using text plus
PoS tags; Figure 3. and Figure 4. show this same
information for representations using text alone. Comparing
Figure 1 and Figure 2. with Figure 3. and Figure 4. indicates

that the classifiers using text and PoS information appear to
provide better performance in terms of pd and pf than
classifiers using text information alone. However, the
difference in performance is not great; further investigation
is continuing to determine whether using PoS information in
this problem domain will improve classifier performance to
the same extent as noted in earlier work (e.g., [17]). Figure
1 and Figure 2. also indicate that the TFxIDF representation
performs better than either counts or term frequencies, since
the ROC curves for TFxIDF come the closest to the upper
left corner of the plot.

TABLE II shows the confusion matrices of the best
performing classifier for each of the five variants of the
three representations of the training set. For example, the
best performing classifier for word counts is SMO, Platt's
sequential minimal optimization algorithm for training a
support vector classifier [25]. Columns 3 and 4 show the
confusion matrices resulting from applying this classifier to
the training data for the variants consisting of the attributes
accounting for 70%, 75%, 80%, 85%, and 90% of the
cumulative classification merit. Columns 5 and 6 contain
the classification matrices of the best performing classifier
for symbol counts, Complement Naïve Bayes [26]. It is
interesting to note in TABLE II that there are roughly as
many true ambiguous requirements in the training set as
there are true unambiguous requirements. If the
requirements we analyze for other missions have similar
proportions of ambiguous and unambiguous requirements,
this suggests that requirements analysts and assurance
engineers will benefit from classifiers that perform well in
differentiating between ambiguous and unambiguous
requirements.

TABLE II also shows that the best performing classifiers
are consistent with what we have seen in our earlier work
analyzing anomaly reports [16] and temporal requirements
[17]. The best performing classifiers in this case are
Complement Naïve Bayes in 4 of 6 cases, and SMO in the
other two cases. In our work on analyzing anomalies,
Complement Naïve Bayes and Multinomial Naïve Bayes
were the best performing classifiers in terms of the distance
of (pf, pd) from the point (0,1) on the ROC curve. For our
earlier work on analyzing temporal requirements, the best
performing classifiers in 4 out of 8 cases were SMO and
Complement Naïve Bayes.

TABLE III compares the pd and pf values of the best
classifier for each representation. Lines that are bolded
indicate the representation that produces the best performing
classifier for each type of requirement (ambiguous or
unambiguous). For example, the first bolded entry in Table
III indicates that the best classifier for ambiguous
requirements, having pd of 0.807 and pf of 0.308, uses both
text and PoS tags and is vectorized as TFxIDF. For
unambiguous requirements, the classifier developed from
the TFxIDF representation of the requirements text using
PoS tags performs better than those developed from text

only. In this case, the best classifier has a pd of 0.692 and
pf of 0.183.

TABLE II. CONFUSION MATRICES FOR BEST CLASSIFIERS – WITH AND
WITHOUT POS INFORMATION

Text Only Text & PoS Tags % Cum
Classifica-
tion Merit

Actual
Class Detect

Ambig.
Detect
Unamb

Detect
Ambig.

Detect
Unamb

Counts

 Best classifier:
SMO

Best classifier:
Complement
Naïve Bayes

Ambig 225 54 211 63
70

Unambig 95 132 95 132

Ambig 221 58 201 73
75

Unambig 94 133 88 139

Ambig 223 56 208 66
80

Unambig 82 145 81 146

Ambig 219 60 208 66
85

Unambig 84 143 74 153

Ambig 202 77 201 73
90

Unambig 78 149 80 147

Frequencies

Best classifier:
Complement
Naïve Bayes

Best classifier:
SMO

Ambig 211 63 219 60
70

Unambig 95 132 90 137

Ambig 201 73 203 76
75

Unambig 88 139 70 157

Ambig 208 66 202 77
80

Unambig 81 146 71 156

Ambig 208 66 206 73
85

Unambig 74 153 63 164

Ambig 201 73 192 87
90

Unambig 80 147 71 156

TFxIDF

Best classifier:
Complement
Naïve Bayes

Best classifier:
Complement
Naïve Bayes

Ambig 211 63 219 60
70

Unambig 95 132 80 147

Ambig 201 73 224 55
75

Unambig 88 139 78 149

Ambig 208 66 228 51
80

Unambig 81 146 70 157

Ambig 208 66 226 53
85

Unambig 74 153 72 155

Ambig 201 73 216 63
90

Unambig 80 147 72 155

TABLE III. PD AND PF FOR BEST CLASSIFIERS OF REQUIREMENTS – WITH

AND WITHOUT POS INFORMATION
Text Only Text & PoS Tags

Representation
pd pf pd pf

Ambiguous Requirements

Count 0.799 0.361 0.759 0.326

Frequency 0.759 0.326 0.738 0.278

TFxIDF 0.759 0.326 0.817 0.308
Unambiguous Requirements

Count 0.639 0.201 0.674 0.241

Frequency 0.674 0.241 0.722 0.262

TFxIDF 0.674 0.241 0.692 0.183

TABLE IV. NUMBER OF ATTRIBUTES IN TRAINING SET VARIANTS

 Percentage of Cumulative Ranking Merit

Representation for
which Training Set

is Constructed
70% 75% 80% 85% 90%

Word Only Representations
2704 attributes in unmodified training set

Counts 427 506 651 706 887

Frequency 382 482 546 693 778

TFxIDF 382 482 546 693 778

Words and PoS Tags Representations
2957 attributes in unmodified training set

Counts 455 566 665 811 911
Frequency 476 550 627 755 897

TFxIDF 476 550 627 755 897

TABLE III compares the pd and pf values of the best
classifier for each representation. Lines that are bolded
indicate the representation that produces the best performing
classifier for each type of requirement (ambiguous or
unambiguous). For example, the first bolded entry in Table
III indicates that the best classifier for ambiguous
requirements, having pd of 0.807 and pf of 0.308, uses both
text and PoS tags and is vectorized as TFxIDF. For
unambiguous requirements, the classifier developed from
the TFxIDF representation of the requirements text using
PoS tags performs better than those developed from text
only. In this case, the best classifier has a pd of 0.692 and
pf of 0.183.

We see that for both ambiguous and unambiguous
requirements, the representation for which the ROC curve
comes closest to the point of ideal classifier performance is
TFxIDF. We also see that representations that include PoS
tags produce classifiers that perform better than those that
do not. These results are consistent with our earlier work
showing that using PoS information and TFxIDF

representations seem to yield better performing classifiers
than counts and frequencies.

TABLE IV specifies the number of attributes in each of
the five variants for each representation of the training set.
For example, the count-based representation using both text
and PoS tags containing those attributes accounting for 75%
of the cumulative classification merit contains 665
attributes. If no attributes had been removed, there would
be 2957 attributes in the training set. The best classifier
performance was found using the text and PoS tag training
set containing the attributes accounting for the first 85% of
cumulative ranking merit, meaning that approximately ¼ of
the attributes from the original training set were required to
build a well-performing classifier.

TABLE V. NUMBER OF ATTRIBUTES IN TRAINING SET VARIANTS IN

PREVIOUS WORK IN ANALYZING ANOMALIES
 Percentage of Cumulative Ranking Merit

Anomaly Report
Class 70% 75% 80% 85% 90% 100%

Word Counts Representations
Flight software

(FSW) 102 309 341 361 372 386

Ground software
(GSW) 123 139 157 362 375 386

FSW+GSW 342 355 366 372 378 386
Procedural or

Operator error
(PROC)

81 94 114 145 211 386

TFxIDF Representations
FSW 48 54 61 69 83 378
GSW 83 95 107 120 134 392

FSW+GSW 78 89 102 116 132 385
PROC 55 61 75 111 148 416

It is interesting to compare this with our earlier work in

analyzing temporal requirements and anomaly reports. For
example, TABLE V specifies the number of attributes in the
various training sets we constructed in analyzing anomaly
reports to more accurately identify software-involved
anomalies [16]. The number of attributes in the unmodified
training sets is given in the last column of TABLE V; for the
word counts representation (no PoS tags), there are a total of
386 attributes; for the text only TFxIDF representation, the
number of attributes in the unmodified training set varies
from 378 to 416 – this is because of the way in which we
applied the WEKA-implemented classifiers to the training
data. For this work, the TFxIDF representations also
produced the best classifier; since the best classifier
performance was seen with training data containing only
those attributes accounting for the first 80% or 85% of the
cumulative ranking merit, between 1/6 and ¼ of the total
number of attributes in the unmodified training data set. In
our related work on analyzing temporal requirements [17],
there were somewhat over 900 attributes in the unmodified
training set. For the TFxIDF text and PoS representation,
the best performance was often obtained for those training
sets containing 500-700 attributes, over half of the number

of attributes in the unmodified training set. The number of
attributes in the unmodified training set appears to
distinguish this particular problem of identifying ambiguous
requirements from our earlier work.

V. POTENTIAL THREATS TO VALIDITY
One potential threat to the validity of the work reported

here concerns the construction of the training sets used to
develop learning models for distinguishing ambiguous and
unambiguous requirements. As mentioned in Section III,
the training sets were constructed by sampling the original
set of ~7500 requirements to obtain a subset of ~500
requirements from which the training data would be
constructed. To obtain the subset, the original requirements
were first listed in the order in which they were extracted
from the requirements repository. Every 16th requirement
was then retained for potential inclusion in the training set.
Our intent in constructing the training set in this manner was
to include requirements for all aspects of the mission being
analyzed. It is possible, although unlikely, that the subset of
requirements extracted in this manner does not represent the
true proportion of ambiguous and unambiguous
requirements in the original set of requirements extracted
from the repository. As part of our ongoing work, however,
we will perform additional samplings of the requirements to
determine whether the proportions of ambiguous and
unambiguous requirements in training sets are
representative of the complete set of mission requirements.

Another potential threat concerns the classification of the
requirements used to construct the training set. The
classification, led by one of the co-authors (Nikora), was
performed manually by reading each requirement to
determine whether it was ambiguous, unambiguous, or
unclassifiable. Those requirements that were deemed by the
manual reading to have either more than a single meaning or
a meaning that could not be determined (e.g., insufficient
information), were labeled as “ambiguous” in the training
data. Those requirements for which the readers could only
agree on a single interpretation were labeled as
“unambiguous” in the training data. There were
requirements for which a classification could not be made;
these were not included in the training data. The readers
may have made errors of interpretation – for example, they
may have labeled an ambiguous requirement as
“unambiguous” because they were not aware of a second
meaning for that requirement. They may also have labeled
unambiguous requirements as “ambiguous” because they
did not have the necessary domain knowledge to correctly
interpret the requirement in the context for which it was
intended. In cases for which the classification lead
recognized such a lack of sufficient domain information,
contact was made with technical staff in the appropriate
domains to help determine the classification of the
requirement in question.

VI. DISCUSSION
Our results to date indicate that relatively simple

machine learning and natural language processing
techniques may be useful in providing automated support to
mission developers and assurance engineers for identifying
ambiguous requirements within a set of specification
documents. Since a large proportion of the requirements we
have analyzed so far appears to be ambiguous, and previous
analyses of anomaly reports [2] indicates that a significant
proportion of software-related anomalies are related to
misunderstood or missing requirements, this type of
automated support may help reduce the number of
requirements defects propagated into the implemented
system. Relatively simple machine learning and natural
language processing techniques produce classifiers
providing a detection rate high enough that they might be
used in real development efforts, although the number of
false positives may still make their use somewhat
impractical. However, if the requirements we are analyzing
for other missions have similar proportions of ambiguous
and unambiguous requirements as those we have analyzed
for the work reported here, only a modest improvement in
performance may be required to develop classifiers that can
support requirements analysis for real projects. Future work
will investigate more sophisticated learning techniques (e.g.,
voting, bagging, boosting) and additional data
representations (e.g., inclusion of additional syntactic
information) to reduce the false positive rate. We will also
investigate how other natural language processing
techniques in addition to parts-of-speech tagging may be
used to help identify ambiguous requirements more
accurately. For example, the number of ways a requirement
may be parsed with a natural language parser may be an
indicator of a particular type of ambiguity. To address the
potential threat of incorrectly classifying requirements as
ambiguous or unambiguous, the investigators will also use
existing guidelines for producing unambiguous
requirements (e.g., [28]) to assure the correctness of manual
classifications.

We saw that the number of attributes in the unmodified
training set was substantially larger than the number of
attributes in the training sets developed for our earlier work
in analyzing anomaly reports and temporal requirements.
As we add additional requirements from the mission we
have been analyzing as well as from additional missions, the
number of attributes may increase substantially as the
vocabulary of the requirements grows. If the number of
attributes becomes too large, the computational resources
required to construct well-performing learning models could
reduce the utility of this technique. To minimize the
possibility of this situation arising, we will investigate
techniques to reduce the number of attributes required to
construct well-performing learning models (e.g.,
discretization, additional attribute evaluation methods, etc.).

As we examine additional requirements in future work,
there may be variations in the requirements across missions

due to differences in the development teams producing the
requirements. For this investigation, a single team was
responsible for the requirements that were analyzed.
However, as we acquire requirements from multiple
missions and analyze them, it will be necessary to determine
whether the composition of different missions’ development
teams has an effect on the learning models produced.

This work represents an early stage of a multi-year effort
to investigate ways of automating the identification of
ambiguous and inconsistent natural-language requirements.
We will investigate the identification of ambiguous
requirements in more detail. For example, we will
investigate techniques for identifying different types of
ambiguity – lexical, syntactic, and semantic. Lexical
ambiguity occurs when there is insufficient context within
the text to narrow its scope to one meaning. Syntactic
ambiguity is found in text that may be parsed in multiple
ways, leading to multiple meanings. Semantic ambiguity,
often referred to as vagueness, is found in sentences with
concepts that may have multiple meanings based on the
formality, surrounding text, or context of a situation. We
will also analyze trends in the proportions of the types of
ambiguous requirements developed for different missions,
as was recently done for different types of defects identified
in space mission on-board software during flight operations
[27].

ACKNOWLEDGEMENT

The work described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of
Technology. This work was sponsored by the National
Aeronautics and Space Administration‘s Office of Safety
and Mission Assurance (OSMA) Software Assurance
Research Program (SARP).

REFERENCES

[1] R. Chillarege, W. L. Kao, and R. G. Condit, "Defect Type and
its Impact on the Growth Curve," in the 13th IEEE
International Conference on Software Engineering, Austin,
Texas, May 13-17, 1991.

[2] R. Lutz and C. Mikulski, “Orthagonal Defect Classification
for Projects,” in the JPL/GSFC Quality Mission Software
Workshop, Rehoboth Beach, DE, May 13, 2003.

[3] F. Shull and C. Seaman, “Inspecting the History of
Inspections: An Example of Evidence-Based Technology
Diffusion,” IEEE Software. 25, 1 (Jan. 2008), 88-90.

[4] Gerard Holzmann, The SPIN Model Checker Primer and
Reference Manual, Addison-Wesley, 2003, ISBN 0-321-
22862-6.

[5] OMG Unified Modeling LanguageTM (OMG UML),
Superstructure version 2.2; Object Management Group, Feb.
2009.

[6] J. H. Hayes, “Risk Reduction Through Requirements
Tracing,” Proc. of 1990 Software Quality Week, San
Francisco, CA, 1990.

[7] J. H. Hayes, A. Dekhtyar, J. Osbourne, “Improving
Requirements Tracing via Information Retrieval,” in

Proceedings of the 2003 IEEE International Conference on
Requirements Engineering, Monterey, California, Sept. 2003.

[8] J. H. Hayes, A. Dekhtyar, S. Sundaram, S. Howard, “Helping
Analysts Trace Requirements: An Objective Look,” in
Proceedings of the IEEE Requirements Engineering
Conference (RE) 2004, Kyoto, Japan, Sept. 2004, pp. 249-
261.

[9] Software Assurance Technology Center (SATC), Goddard
Space Flight Center, National Aeronautics and Space
Administration, http://satc.gsfc.nasa.gov/index.php, last
viewed Feb. 19, 2010.

[10] W. Wilson., L. Rosenberg, and L. Hyatt, "Automated Quality
Analysis of Natural Language Requirement Specifications,"
in the Proceedingsof the 14th Annual Pacific Northwest
Software Quality Conference, Portland, 1996.

[11] Requirements Assistant, http://www.requirementsassistant.nl,
last viewed may 23, 2010.

[12] R. L. Cobleigh, G. S. Avrunin, L. A. Clarke, “User Guidance
for Creating Precise and Accessible Property Specifications,”
in the Proceedings of the ACM SIGSOFT 14th International
Symposium on Foundations of Software Engineering
(FSE14), Portland, OR, pp. 208-218, Nov. 2006.

[13] R. L. Smith, G. S. Avrunin, L. A. Clarke, “From Natural
Language Requirements to Rigorous Property Specifications,”
Monterey Workshop 2003 (Workshop on Software
Engineering for Embedded Systems (SEES 2003) From
Requirements to Implementation, Chicago, IL, pp. 40-46,
Sept. 2003.

[14] R. L. Smith, G. S. Avrunin, L. A. Clarke, L. J. Oster-weil,
“PROPEL: An Approach Supporting Property Elucidation,”
in the Proceedings of the 24th International Conference on
Software Engineering (ICSE 2002), Orlando, FL, pp. 11-21,
May 2002.

[15] University of Massachusetts, Laboratory for Advanced
Software Engineering Research, PROPEL web page,
http://laser.cs.umass.edu/tools/propel.shtml. Last viewed
May 23, 2010.

[16] A. Nikora, G. Balcom, “Improving the Accuracy of Space
Mission Software Anomaly Frequency Estimates,”,
proceedings of Third International Conference on Space
Mission Challenges for Information Technology (SMC-IT
2009), Jul 2009, Pasadena, CA

[17] A. Nikora, Galen Balcom, "Automated Identification of LTL
Patterns in Natural Language Requirements," in the
Proceedings of the 20th International Symposium on Software
Reliability Engineering, IEEE Press, Nov. 2009 pp. 185-194,
doi: 10.1109/ISSRE.2009.15.

[18] T. Brants, “TnT ‒ A Statistical Part-of-Speech Tagger,” in the
Proceedings of the 6th Applied Natural Language Processing
Conference, Apr. 2000, pp. 224-231,
doi:10.3115/974147.974178.

[19] T. Brants, “TnT -- Statistical Part-of-Speech Tagging,”
Universität des Saarlandes, Department of Computational
Linguistics, TnT software download application form,
http://www.coli.uni-sb.de/~thorsten/tnt/, viewed May 23,
2010.

[20] “Part of Speech Tagging Guidelines for the Penn Treebank
Project,” The Penn Treebank Project, University of
Pennsylvania, http://www.cis.upenn.edu/~treebank/, viewed
May 23, 2010.

[21] Stop list, IR linguistic utilities, Idomeneus technology transfer
server, University of Glascow Department of Computer
Science,
http://ir.dcs.gla.ac.uk/resources/linguistic_utils/stop_words,
last viewed Feb. 19, 2010.

[22] Ian H. Witten, Eibe Frank, Data Mining: Practical Machine
Learning Tools and Techniques, Second Edition, Morgan
Kaufmann, June 2005, ISBN 0-12088-407-0.

[23] The University of Waikato Computer Science Department
Machine Learning Group, WEKA software download,
http://www.cs.waikato.ac.nz/~ml/weka/index.html, last
viewed May 23, 2010.

[24] The University of Waikato Computer Science Department
Machine Learning Group, Attribute-Relation File Format,
http://www.cs.waikato.ac.nz/~ml/weka/arff.html, last viewed
May 23, 2010.

[25] J. Platt: Fast Training of Support Vector Machines using
Sequential Minimal Optimization. In B. Schoelkopf and C.

Burges and A. Smola, editors, Advances in Kernel Methods -
Support Vector Learning, 1998

[26] J. D. Rennie, L. Shih, J. Teevan, D. R. Karger: Tackling the
Poor Assumptions of Naive Bayes Text Classifiers. In: ICML,
616-623, 2003.

[27] A. Nikora, M. Grottke, K. S. Trivedi, “An Empirical
Investigation of Fault Types in Space Mission System
Software”, to appear in proceedings of 40th IEEE/IFIP
International Conference on Dependable Systems and
Networks, Chicago, IL, June, 2010.

[28] D. Berry, E. Kamsties, M. Krieger, “From Contract Drafting
to Software Specification: Linguistic Sources of Ambiguity,”
Nov. 2003, available at http://se.uwaterloo.ca/~dberry/hand-
book/ambiguityHandbook.pdf, last viewed May 23, 2010.

Figure 1. ROC Curves for Ambiguous Symbol Counts, Frequencies, and TFxIDF.

Figure 2. ROC Curves for Unambiguous Symbol Counts, Frequencies, and TFxIDF

Figure 3. ROC Curves for Ambiguous Word Counts, Frequencies, and TFxIDF

Figure 4. ROC Curves for Unambiguous Word Counts, Frequencies, and TFxIDF

