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Abstract — Recent research indicates that a significant 
proportion of the failures observed in operational space 
mission systems can be traced back to ambiguous 
requirements.  Frequently, the functionality and behavior 
specified by the defective requirement is insufficiently detailed 
(e.g., information about the expected operational context is 
missing) or the requirement is phrased so as to permit multiple 
interpretations.  Recent analysis of several thousand anomalies 
observed in operational space missions shows that about 20% 
are due to either operator error or faulty procedures.  Again, 
many of these anomalies can be traced back to requirements 
exhibiting the same types of ambiguities. 

Since a typical space mission is specified by several 
thousand requirements, a significant amount of effort may 
need to be expended to discover ambiguous requirements.  
Many development organizations still conduct this type of 
discovery manually, after the requirements have been specified 
– in addition to requiring significant effort, manual analysis is 
also error-prone. 

Previous work has shown the utility of machine learners 
and simple natural language processing techniques (e.g., parts 
of speech tagging) for supporting the identification of a 
relatively small number of temporal requirements within a 
large body of system requirements.  We extend this work to the 
problem of identifying the ambiguous requirements within the 
complete set of requirements for the flight and ground 
components of a recently-launched space mission.  Initial 
results indicate that these techniques can be effective in 
automatically identifying ambiguous requirements.  Unlike 
heuristic techniques, new learning models for identifying 
ambiguous requirements can be developed as mission 
requirements and vocabularies evolve. 
 

Keywords – requirements analysis, requirements ambiguity, 
text processing. 

I.  INTRODUCTION 
Defective requirements have been shown to be a 

significant root cause of failures observed in software 
systems during fielded use [1], [2].  Ambiguous requirement 
are an important type of defect contributing to operational 
failures of software systems.  A number of software 
development practices, such as formal inspections [3], are 
designed to identify this and other types of defects during 
development so as to prevent their escape into operations.  
Requirements that have been developed with a specification 
language (e.g., Promela [4], UML [5]) can be input to tools 

that will reason about specific properties of the requirements 
and identify those properties that are not satisfied by the 
requirements.  Although these techniques can be quite 
effective in identifying some types of requirements defects, 
they still have a low level of acceptance in software 
development organizations.  A significant amount of effort 
can be required to learn: 
• A formal specification language 
• Effective use of the analysis tools. 
• The skill of abstracting away unnecessary detail when 

specifying requirements in a formal language. 
At the same time, there is increasing pressure to 

minimize the cost and schedule time for software 
development efforts, giving software developers even less 
time to learn effective use of formal techniques.  
Consequently, a large majority of software requirements we 
have seen continue to be specified in natural language. 
 When analyzing requirements, then, we must be able to 
deal with natural language requirements.  This paper 
describes work in one specific area, that of identifying 
ambiguous requirements.  Because specification documents 
for the types of systems with which the investigators have 
experience typically contain thousands of requirements, 
manual identification (i.e., reading) of ambiguous 
requirements may require significant effort, and can also be 
error-prone.  Automated support for identifying ambiguous 
requirements could reduce the required effort, and 
potentially increase the identification accuracy.  Results 
obtained to date indicate that well-performing classifiers for 
identifying ambiguous requirements may be developed 
using simple representations of the text and structure of 
natural language requirements. 
 The remainder of the paper is organized as follows: 
• Section II describes work related to identifying 

ambiguous natural-language requirements. 
• Section III describes an approach to identifying 

ambiguous natural-language requirements. 
• Section IV presents the results of our work. 
• Section V addresses potential threats to the validity of 

this work. 
• Section VI discusses the results of this work, and lays 

out directions for future research in this area. 
 



II. RELATED WORK 
Hayes et al. have developed several requirements tracing 

methods and tools for NASA, such as keyword matching 
based Software Automated Verification and Validation and 
Analysis System (SAVVAS) Front End Processor (SFEP) 
[6] and Information Retrieval (IR) based approach [7], [8].  
To determine whether a higher-level requirement is related 
to a lower-level requirement, the IR based requirements 
tracing method counts the number of common terms and 
their frequency in both requirements.Then their similary is 
determined based on the relative frequencies of common 
terms.  This approach has been applied to a small project 
and has shown improvement over manual tracing.   
Although this technique can be used to identify related 
requirements within a subset of requirements of a specific 
type (e.g., temporal requirements), its intended use is not to 
identify requirements of a specific type. 

The Software Assurance Technology Center (SATC) at 
the Goddard Spaceflight Center (GSFC) [9] has developed 
the Automated Requirements Measurement (ARM) tool for 
assessing the quality of requirements specified in natural 
language [10].  ARM searches a requirements document for 
terms that research conducted by the SATC has identified as 
quality indicators; several of the measured terms are linked 
by the research to requirements ambiguity. 

Requirements Assistant, a commercially available tool, 
encodes the experience of its developers in a knowledge 
base geared towards identifying ambiguous, inconsistent, or 
incomplete requirements [11]. 

Cobleigh et al. have developed the Property Eludicator 
(PROPEL), a technique and toolset for elucidating rigorous 
system properties in natural language [12], [13], [14], [15].  
Since the goal of PROPEL is the accurate and complete 
specification of system properties, it can be considered as a 
technique and tool for addressing ambiguity of specific 
types of requirements. Unlike the previously mentioned 
techniques and tools, PROPEL deals with ambiguity from 
the point of view of preventing the generation of ambiguous 
requirements rather than identifying them. The PROPEL 
website [15] states that “The PROPEL approach provides 
templates that explicitly capture these [subtle but important, 
and often unconsidered] details for property patterns that 
commonly occur in the properties that are created for model 
checking and other types of analysis. With PROPEL, users 
are shown the evolving property specification in both 
"disciplined" English [a restricted subset of natural 
language] sentences and graphical finite-state automata 
(FSA), allowing the specifier to easily move between these 
two views as they develop their properties.” 

Finally, one of the investigators has recently used 
machine learning and natural language processing to 
identify temporal requirements within a specification 
document [16] and to differentiate between 8 frequently-

used Linear Temporal Logic (LTL) patterns in natural-
language temporal requirements [17].  Although that work 
did not address the issue of ambiguous requirements, the 
goal was to distinguish between two or more different types 
of natural-language requirements, which is relevant to the 
work reported here. 

III. DATA SOURCES, REPRESENTATION, AND APPROACH 
The requirements we analyzed are for a JPL-managed 

robotic planetary exploration mission that is currently 
operating.  Nearly 7500 requirements were available for 
analysis – these included functional, nonfunctional, and 
development process requirements.  For this work, we 
sampled this set of requirements to produce a set of training 
data to which machine learners and natural language 
processing techniques could be applied.  The sampling 
strategy selected over 500 requirements from the original 
set, each requirement having the same likelihood of being 
selected as any other.  We then read each requirement to 
classify it as “ambiguous “or “not ambiguous.”  We are 
confident in our classifications because the individual who 
led this subtask (Nikora) has extensive experience (over 30 
years) in developing space mission system software and 
assessing its quality.  A small fraction of the requirements 
could not be classified with confidence; these were excluded 
from the final set used to construct the training data, which 
still included over 500 requirements.  In the final set of 
requirements, the number tagged as ambiguous was 
somewhat larger than, but close to, the number of 
requirements tagged as ambiguous. 

The training data to which we applied machine learners 
was constructed from the final set of requirements in the 
following manner: 

1. The Trigrams ‘n‘ Tags (TnT) parts-of-speech 
(PoS) tagger [18], [19] was applied to each 
word in each requirement as in our earlier 
work (e.g., [16], [17]).  For each text string 
input to TnT, a string of parts-of-speech tags is 
returned, each tag corresponding to a word in 
the original text string.  For example, applying 
TnT to the text “The star scanner shall be 
calibrated no earlier than 30 days after launch 
and no later than 40 days after launch” 
produces the following string of PoS tags: 
“DT, NN, NN, MD, VB, VBN, RB, RBR, IN, 
CD, NNS, IN, NN, CC, RB, RBR, IN, CD, 
NNS, IN, NN”.  The meanings of the tags in 
this string are as follows. CC: Coordinating 
conjunction; CD: Cardinal number; DT: 
Determiner; IN: Conjunction, subordinating; 
MD: Modal Verb; NN: Noun, singular or 
mass; NNS: Noun, plural; RB: Adverb; RBR: 
Adverb, comparative; VB: Verb, base form; 
VBN: Past participle.  The Penn Treebank 



Guidelines [20] define the meanings of all tags 
produced by TnT. 

2. For each word in a requirement, the PoS tag 
produced by TnT for that word was appended 
to that word. For the requirement “The star 
scanner shall be calibrated no earlier than 30 
days after launch and no later than 40 days 
after launch,” this operation yields the symbol 
string “The_DT star_NN scanner_NN 
shall_MD be_VB calibrated_VBN no_RB 
earlier_RBR than_IN 30_CD days_NNS 
after_IN launch_NN and_CC no_RB 
later_RBR than_IN 40_CD days_NNS 
after_IN launch_NN.” 

3. After the PoS tags were appended to the words 
in the text of the requirement, those symbols 
containing frequently-used words were 
removed from the text.  A stop list posted on 
the website of the University of Glascow’s 
Department of Computer Science defines the 
words that were removed [21].  In addition to 
the words on this list, symbols containing the 
word “shall” were removed from the text. 

4. Each requirement was formatted as a text 
string in the Attribute-Relation File Format 
Attribute-Relation File Format (ARFF) [22], 
[24] for the WEKA data mining tool [23]. 

5. WEKA’s capabilities were used to transform 
the text string into a vectorized representation.  
The text string was converted into three 
different representations – word/symbol 
counts, frequencies, and TF (Term Frequency) 
x IDF (Inverse Document Frequency) 

6. We also created representations of the 
temporal requirements text without the PoS 
information by omitting steps 1 and 2 above.    

Each record in the data section is a vectorized 
representation of the text string for an individual ISA.  In 
the example above, the first item in the first data record is 
the value of TFxIDF for the word “parameters”, the second 
item is the value of TF x IDF for the word “schedule”, and 
so forth.  For the other representations, these values are 
word counts and frequencies.  The class of the ISA is 
appended to end of the vector.  For the example above, we 
distinguish between ambiguous requirements (Ambig) and 
unambiguous requirements (Unambig).  

We then developed five variants for each training set by 
varying the number of included attributes. In this case, an 
attribute is the count, frequency, or TFxIDF value for the 
unique symbols or words in the set of requirements. The 
attributes for each variant were chosen by applying 
WEKA‘s implementation of the Information Gain 
(InfoGain) attribute evaluator in conjunction with the 
Ranker attribute ranking technique [22]. The first variant of 
the training data included the attributes accounting for the 
first 70% of the classification merit according to InfoGain, 

the second included the attributes accounting for the first 
75% of the classification merit, and so on to the fifth 
variant, which included 90% of the attributes respectively. 

Twenty-nine classifiers implemented in WEKA, shown in 
TABLE I, were applied to these training sets. The classifiers 
were applied to each variant using 10-fold cross validation, 
the results of which were used to plot Receiver Operational 
Characteristic (ROC) curves [22] curves for each classifier 
applied to each variant. 

TABLE I. CLASSFIERS APPLIED TO TRAINING SETS 

AD Tree Naïve Bayes Updateable 
Bayes Net Naïve Bayes 

Complement Naïve Bayes NB Tree 
Conjunctive Rule Nnge 
Decision Stump OneR 
Decision Table PART 

Hyper Pipes Random Forest 
IB1 Random Tree 
IBk RBF Network 
J48 Ridor 
JRip SMO 
Kstar VFI 

Simple Logistic Voted Perceptron 
LWL 

Naïve Bayes Multinomial 
Zero R 

IV. RESULTS 
Classifiers are evaluated according to four criteria: pd 

(probability of detection), pf (probability of false detection, 
or “false positives”), accuracy, and precision. These criteria 
are defined with respect to a confusion matrix, as follows: 

• Probability of detection (pd): a/(a+b) 
• Probability of false detection (pf): c/(c+d) 
• Precision: c/(a+c) 
• Accuracy: (a+d)/(a+b+c+d) 

where a, b, c, and d are entries in a confusion matrix: 

Detected as 
type “x” 

Detected as 
type “y” 

 

a b Really type “x” 
c d Really type “y” 

 
In this case, we chose as the best classifier the one whose 

ROC curve comes closest to the performance ideal – a pd 
value of 1 and pf value of 0. 

Figure 1. - Figure 4. show the ROC curves for the “best” 
classifiers obtained for each type of representation. Figure 1.  
and Figure 2. show the performance of the best classifiers 
for counts, frequencies, and TFxIDF values using text plus 
PoS tags; Figure 3. and Figure 4. show this same 
information for representations using text alone.  Comparing 
Figure 1 and Figure 2. with Figure 3. and Figure 4. indicates 



that the classifiers using text and PoS information appear to 
provide better performance in terms of pd and pf than 
classifiers using text information alone. However, the 
difference in performance is not great; further investigation 
is continuing to determine whether using PoS information in 
this problem domain will improve classifier performance to 
the same extent as noted in earlier work (e.g., [17]).  Figure 
1 and Figure 2. also indicate that the TFxIDF representation 
performs better than either counts or term frequencies, since 
the ROC curves for TFxIDF come the closest to the upper 
left corner of the plot. 

TABLE II shows the confusion matrices of the best 
performing classifier for each of the five variants of the 
three representations of the training set.  For example, the 
best performing classifier for word counts is SMO, Platt's 
sequential minimal optimization algorithm for training a 
support vector classifier [25].  Columns 3 and 4 show the 
confusion matrices resulting from applying this classifier to 
the training data for the variants consisting of the attributes 
accounting for 70%, 75%, 80%, 85%, and 90% of the 
cumulative classification merit.  Columns 5 and 6 contain 
the classification matrices of the best performing classifier 
for symbol counts, Complement Naïve Bayes [26].  It is 
interesting to note in TABLE II that there are roughly as 
many true ambiguous requirements in the training set as 
there are true unambiguous requirements.  If the 
requirements we analyze for other missions have similar 
proportions of ambiguous and unambiguous requirements, 
this suggests that requirements analysts and assurance 
engineers will benefit from classifiers that perform well in 
differentiating between ambiguous and unambiguous 
requirements. 

TABLE II also shows that the best performing classifiers 
are consistent with what we have seen in our earlier work 
analyzing anomaly reports [16] and temporal requirements 
[17].  The best performing classifiers in this case are 
Complement Naïve Bayes in 4 of 6 cases, and SMO in the 
other two cases.  In our work on analyzing anomalies, 
Complement Naïve Bayes and Multinomial Naïve Bayes 
were the best performing classifiers in terms of the distance 
of (pf, pd) from the point (0,1) on the ROC  curve.  For our 
earlier work on analyzing temporal requirements, the best 
performing classifiers in 4 out of 8 cases were SMO and 
Complement Naïve Bayes. 

TABLE III compares the pd and pf values of the best 
classifier for each representation.  Lines that are bolded 
indicate the representation that produces the best performing 
classifier for each type of requirement (ambiguous or 
unambiguous).  For example, the first bolded entry in Table 
III indicates that the best classifier for ambiguous 
requirements, having pd of 0.807 and pf of 0.308, uses both 
text and PoS tags and is vectorized as TFxIDF.  For 
unambiguous requirements, the classifier developed from 
the TFxIDF representation of the requirements text using 
PoS tags performs better than those developed from text 

only.  In this case, the best classifier has a pd of 0.692 and 
pf of 0.183. 
 

TABLE II. CONFUSION MATRICES FOR BEST CLASSIFIERS  – WITH AND 
WITHOUT POS INFORMATION 

Text Only Text & PoS Tags % Cum 
Classifica-
tion Merit 

Actual 
Class Detect 

Ambig. 
Detect 
Unamb 

Detect 
Ambig. 

Detect 
Unamb 

Counts 

 Best classifier: 
SMO 

Best classifier: 
Complement 
Naïve Bayes 

Ambig 225 54 211 63 
70 

Unambig 95 132 95 132 

Ambig 221 58 201 73 
75 

Unambig 94 133 88 139 

Ambig 223 56 208 66 
80 

Unambig 82 145 81 146 

Ambig 219 60 208 66 
85 

Unambig 84 143 74 153 

Ambig 202 77 201 73 
90 

Unambig 78 149 80 147 

Frequencies 

 
Best classifier: 
Complement 
Naïve Bayes 

Best classifier: 
SMO 

Ambig 211 63 219 60 
70 

Unambig 95 132 90 137 

Ambig 201 73 203 76 
75 

Unambig 88 139 70 157 

Ambig 208 66 202 77 
80 

Unambig 81 146 71 156 

Ambig 208 66 206 73 
85 

Unambig 74 153 63 164 

Ambig 201 73 192 87 
90 

Unambig 80 147 71 156 

TFxIDF 

 
Best classifier: 
Complement 
Naïve Bayes 

Best classifier: 
Complement 
Naïve Bayes 

Ambig 211 63 219 60 
70 

Unambig 95 132 80 147 

Ambig 201 73 224 55 
75 

Unambig 88 139 78 149 

Ambig 208 66 228 51 
80 

Unambig 81 146 70 157 

Ambig 208 66 226 53 
85 

Unambig 74 153 72 155 

Ambig 201 73 216 63 
90 

Unambig 80 147 72 155 



 
 
 
TABLE III. PD AND PF FOR BEST CLASSIFIERS OF REQUIREMENTS – WITH 

AND WITHOUT POS INFORMATION 
Text Only Text & PoS Tags 

Representation 
pd pf pd pf 

Ambiguous Requirements 

Count 0.799 0.361 0.759 0.326 

Frequency 0.759 0.326 0.738 0.278 

TFxIDF 0.759 0.326 0.817 0.308 
Unambiguous Requirements 

Count 0.639 0.201 0.674 0.241 

Frequency 0.674 0.241 0.722 0.262 

TFxIDF 0.674 0.241 0.692 0.183 
 
TABLE IV. NUMBER OF ATTRIBUTES IN TRAINING SET VARIANTS 

 Percentage of Cumulative Ranking Merit 

Representation for 
which Training Set 

is Constructed 
70% 75% 80% 85% 90% 

Word Only Representations 
2704 attributes in unmodified training set 

Counts 427 506 651 706 887 

Frequency 382 482 546 693 778 

TFxIDF 382 482 546 693 778 

Words and PoS Tags Representations 
2957 attributes in unmodified training set 

Counts 455 566 665 811 911 
Frequency 476 550 627 755 897 

TFxIDF 476 550 627 755 897 
 

TABLE III compares the pd and pf values of the best 
classifier for each representation.  Lines that are bolded 
indicate the representation that produces the best performing 
classifier for each type of requirement (ambiguous or 
unambiguous).  For example, the first bolded entry in Table 
III indicates that the best classifier for ambiguous 
requirements, having pd of 0.807 and pf of 0.308, uses both 
text and PoS tags and is vectorized as TFxIDF.  For 
unambiguous requirements, the classifier developed from 
the TFxIDF representation of the requirements text using 
PoS tags performs better than those developed from text 
only.  In this case, the best classifier has a pd of 0.692 and 
pf of 0.183. 

We see that for both ambiguous and unambiguous 
requirements, the representation for which the ROC curve 
comes closest to the point of ideal classifier performance is 
TFxIDF.  We also see that representations that include PoS 
tags produce classifiers that perform better than those that 
do not.  These results are consistent with our earlier work 
showing that using PoS information and TFxIDF 

representations seem to yield better performing classifiers 
than counts and frequencies. 

TABLE IV specifies the number of attributes in each of 
the five variants for each representation of the training set.  
For example, the count-based representation using both text 
and PoS tags containing those attributes accounting for 75% 
of the cumulative classification merit contains 665 
attributes.  If no attributes had been removed, there would 
be 2957 attributes in the training set.  The best classifier 
performance was found using the text and PoS tag training 
set containing the attributes accounting for the first 85% of 
cumulative ranking merit, meaning that approximately ¼ of 
the attributes from the original training set were required to 
build a well-performing classifier. 

 
TABLE V. NUMBER OF ATTRIBUTES IN TRAINING SET VARIANTS IN 

PREVIOUS WORK IN ANALYZING ANOMALIES 
 Percentage of Cumulative Ranking Merit 

Anomaly Report 
Class 70% 75% 80% 85% 90% 100% 

Word Counts Representations 
Flight software 

(FSW) 102 309 341 361 372 386 

Ground software 
(GSW) 123 139 157 362 375 386 

FSW+GSW 342 355 366 372 378 386 
Procedural or 

Operator error 
(PROC) 

81 94 114 145 211 386 

TFxIDF Representations 
FSW 48 54 61 69 83 378 
GSW 83 95 107 120 134 392 

FSW+GSW 78 89 102 116 132 385 
PROC 55 61 75 111 148 416 

 
It is interesting to compare this with our earlier work in 

analyzing temporal requirements and anomaly reports.  For 
example, TABLE V specifies the number of attributes in the 
various training sets we constructed in analyzing anomaly 
reports to more accurately identify software-involved 
anomalies [16].  The number of attributes in the unmodified 
training sets is given in the last column of TABLE V; for the 
word counts representation (no PoS tags), there are a total of 
386 attributes; for the text only TFxIDF representation, the 
number of attributes in the unmodified training set varies 
from 378 to 416 – this is because of the way in which we 
applied the WEKA-implemented classifiers to the training 
data.  For this work, the TFxIDF representations also 
produced the best classifier; since the best classifier 
performance was seen with training data containing only 
those attributes accounting for the first 80% or 85% of the 
cumulative ranking merit, between 1/6 and ¼ of the total 
number of attributes in the unmodified training data set.  In 
our related work on analyzing temporal requirements [17], 
there were somewhat over 900 attributes in the unmodified 
training set.  For the TFxIDF text and PoS representation, 
the best performance was often obtained for those training 
sets containing 500-700 attributes, over half of the number 



of attributes in the unmodified training set.  The number of 
attributes in the unmodified training set appears to 
distinguish this particular problem of identifying ambiguous 
requirements from our earlier work. 

V. POTENTIAL THREATS TO VALIDITY 
One potential threat to the validity of the work reported 

here concerns the construction of the training sets used to 
develop learning models for distinguishing ambiguous and 
unambiguous requirements.  As mentioned in Section III, 
the training sets were constructed by sampling the original 
set of ~7500 requirements to obtain a subset of ~500 
requirements from which the training data would be 
constructed.  To obtain the subset, the original requirements 
were first listed in the order in which they were extracted 
from the requirements repository.  Every 16th requirement 
was then retained for potential inclusion in the training set.  
Our intent in constructing the training set in this manner was 
to include requirements for all aspects of the mission being 
analyzed.  It is possible, although unlikely, that the subset of 
requirements extracted in this manner does not represent the 
true proportion of ambiguous and unambiguous 
requirements in the original set of requirements extracted 
from the repository.  As part of our ongoing work, however, 
we will perform additional samplings of the requirements to 
determine whether the proportions of ambiguous and 
unambiguous requirements in training sets are 
representative of the complete set of mission requirements. 

Another potential threat concerns the classification of the 
requirements used to construct the training set.  The 
classification, led by one of the co-authors (Nikora), was 
performed manually by reading each requirement to 
determine whether it was ambiguous, unambiguous, or 
unclassifiable.  Those requirements that were deemed by the 
manual reading to have either more than a single meaning or 
a meaning that could not be determined (e.g., insufficient 
information), were labeled as “ambiguous” in the training 
data.  Those requirements for which the readers could only 
agree on a single interpretation were labeled as 
“unambiguous” in the training data.  There were 
requirements for which a classification could not be made; 
these were not included in the training data.  The readers 
may have made errors of interpretation – for example, they 
may have labeled an ambiguous requirement as 
“unambiguous” because they were not aware of a second 
meaning for that requirement.  They may also have labeled 
unambiguous requirements as “ambiguous” because they 
did not have the necessary domain knowledge to correctly 
interpret the requirement in the context for which it was 
intended.  In cases for which the classification lead 
recognized such a lack of sufficient domain information, 
contact was made with technical staff in the appropriate 
domains to help determine the classification of the 
requirement in question. 

VI. DISCUSSION 
Our results to date indicate that relatively simple 

machine learning and natural language processing 
techniques may be useful in providing automated support to 
mission developers and assurance engineers for identifying 
ambiguous requirements within a set of specification 
documents.  Since a large proportion of the requirements we 
have analyzed so far appears to be ambiguous, and previous 
analyses of anomaly reports [2] indicates that a significant 
proportion of software-related anomalies are related to 
misunderstood or missing requirements, this type of 
automated support may help reduce the number of 
requirements defects propagated into the implemented 
system.  Relatively simple machine learning and natural 
language processing techniques produce classifiers 
providing a detection rate high enough that they might be 
used in real development efforts, although the number of 
false positives may still make their use somewhat 
impractical. However, if the requirements we are analyzing 
for other missions have similar proportions of ambiguous 
and unambiguous requirements as those we have analyzed 
for the work reported here, only a modest improvement in 
performance may be required to develop classifiers that can 
support requirements analysis for real projects.  Future work 
will investigate more sophisticated learning techniques (e.g., 
voting, bagging, boosting) and additional data 
representations (e.g., inclusion of additional syntactic 
information) to reduce the false positive rate. We will also 
investigate how other natural language processing 
techniques in addition to parts-of-speech tagging may be 
used to help identify ambiguous requirements more 
accurately.  For example, the number of ways a requirement 
may be parsed with a natural language parser may be an 
indicator of a particular type of ambiguity.  To address the 
potential threat of incorrectly classifying requirements as 
ambiguous or unambiguous, the investigators will also use 
existing guidelines for producing unambiguous 
requirements (e.g., [28]) to assure the correctness of manual 
classifications.   

We saw that the number of attributes in the unmodified 
training set was substantially larger than the number of 
attributes in the training sets developed for our earlier work 
in analyzing anomaly reports and temporal requirements.  
As we add additional requirements from the mission we 
have been analyzing as well as from additional missions, the 
number of attributes may increase substantially as the 
vocabulary of the requirements grows.  If the number of 
attributes becomes too large, the computational resources 
required to construct well-performing learning models could 
reduce the utility of this technique.  To minimize the 
possibility of this situation arising, we will investigate 
techniques to reduce the number of attributes required to 
construct well-performing learning models (e.g., 
discretization, additional attribute evaluation methods, etc.). 

As we examine additional requirements in future work, 
there may be variations in the requirements across missions 



due to differences in the development teams producing the 
requirements. For this investigation, a single team was 
responsible for the requirements that were analyzed. 
However, as we acquire requirements from multiple 
missions and analyze them, it will be necessary to determine 
whether the composition of different missions’ development 
teams has an effect on the learning models produced.  

This work represents an early stage of a multi-year effort 
to investigate ways of automating the identification of 
ambiguous and inconsistent natural-language requirements.  
We will investigate the identification of ambiguous 
requirements in more detail.  For example, we will 
investigate techniques for identifying different types of 
ambiguity – lexical, syntactic, and semantic.  Lexical 
ambiguity occurs when there is insufficient context within 
the text to narrow its scope to one meaning.  Syntactic 
ambiguity is found in text that may be parsed in multiple 
ways, leading to multiple meanings.  Semantic ambiguity, 
often referred to as vagueness, is found in sentences with 
concepts that may have multiple meanings based on the 
formality, surrounding text, or context of a situation.  We 
will also analyze trends in the proportions of the types of 
ambiguous requirements developed for different missions, 
as was recently done for different types of defects identified 
in space mission on-board software during flight operations 
[27]. 
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Figure 1.  ROC Curves for Ambiguous Symbol Counts, Frequencies, and TFxIDF. 

Figure 2.  ROC Curves for Unambiguous Symbol Counts, Frequencies, and TFxIDF 

 

 



Figure 3.  ROC Curves for Ambiguous Word Counts, Frequencies, and TFxIDF 

 

Figure 4.  ROC Curves for Unambiguous Word Counts, Frequencies, and TFxIDF 

 

 


